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Source-independent full-waveform inversion of seismic data
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ABSTRACT

A rigorous full-waveform inversion of seismic data has
been a challenging subject, partly because of the lack of
precise knowledge of the source. Since currently avail-
able approaches involve some form of approximations
to the source, inversion results are subject to the quality
and choice of the source information used. We propose a
new full-waveform inversion methodology that does not
involve source spectrum information. Thus, potential in-
version errors from source estimation can be eliminated.
A gather of seismic traces is first Fourier transformed
into the frequency domain, and a normalized wavefield
is obtained for each trace in the frequency domain. Nor-
malization is done with respect to the frequency response
of a reference trace selected from the gather, so the
complex-valued normalized wavefield is dimensionless.
The source spectrum is eliminated during the normaliza-
tion procedure. With its source spectrum eliminated, the
normalized wavefield lets us construct an inversion al-
gorithm without the source information. The inversion
algorithm minimizes misfits between a measured nor-
malized wavefield and a numerically computed normal-
ized wavefield. The proposed approach has been demon-
strated successfully using a simple 2D scalar problem.

INTRODUCTION

A common practice in the seismic industry is to estimate
subsurface velocity structure by analyzing the traveltimes of
the seismic signals. In crosshole and surface-to-borehole ap-
plications, typical approaches involve ray tomography (e.g.,
Nolet, 1985; Peterson et al., 1985; Humphreys and Clayton,
1988; Scales et al., 1988; Vasco, 1991) and Fresnel volume
tomography (e.g., Cerveny and Soares, 1992; Vasco et al.,
1995). Traveltime tomographies using ray tracing require high-
frequency approximation, with maximum resolution on the or-
der of a wavelength (Sheng and Schuster, 2000) or a fraction
(5%) of the well separation in some practical cases. Because of

poor resolution, however, usefulness of ray tomography may
be limited if the objective is to better understand the petro-
physical and hydrological properties of soils and rocks. Such
understanding is important in characterizing petroleum and
geothermal reservoirs and in environmental applications of
various scales.

An alternative to traveltime tomography is full-waveform
inversion. Studies (e.g., Kormendi and Dietrich, 1991; Sen and
Stoffa, 1991; Minkoff and Symes, 1997; Zhou et al., 1997; Plessix
and Bork, 1998; Pratt, 1999a,b) suggest that full-waveform in-
version can improve resolution of velocity and density struc-
tures. Amplitudes and phases of waveforms are sensitive to
the petrophysical property of the materials through which the
wave propagates. Therefore, full-waveform analyses may be
used when investigating hydrological and petrophysical prop-
erties of a medium. However, there is one major difficulty to
overcome in full-waveform inversion. In all field applications,
the effective source waveform, the coupling between the source
and the medium, and the coupling between the receivers and
the medium are poorly understood. The problem can be allevi-
ated to some extent with a good velocity approximation (Pratt,-
1999a), but the measured signals cannot be calibrated properly
in general, making full-waveform inversion technically difficult
to apply.

We propose a methodology to overcome this difficulty.
The approach first transforms seismic data into the frequency
domain; then a set of normalized wavefield is constructed. The
normalized wavefield is independent of the spectrum of the
source, so the proposed method allows full-waveform inversion
without requiring knowledge of the source signature. Frazer
et al. (1997) and Frazer and Sun (1998) present an inversion
scheme for interpreting well-log sonic waveform data. In prin-
ciple their approach is source independent, but it requires a
source function as a necessary part of the inversion procedure.
As a result the performance of inversion may depend on the
source function chosen.

NORMALIZED WAVEFIELD

Let us assume a seismic field survey involving NS source
positions and NG receiver positions. The source-receiver
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configuration depends on the survey objective; the placement
of sources and receivers is directed to ensure proper subsurface
illumination. The proposed full-waveform inversion scheme
can be applied to analyzing data obtained from arbitrary con-
figurations: surface or single borehole, surface-to-borehole or
borehole-to surface, or crosshole.

To demonstrate the validity of the proposed inversion
scheme, we consider a simple acoustic problem. The field data,
in general, may be described as

D4(1) = R;(1)* Pi(0)*Si (1),
j=12,...,NG, i=12...NS, (1)

where « denotes convolution in time and 4 indicates data from
the true medium. We retain d because we refer to the computer-
generated model data using the superscript m later in this pa-
per. Here, Dj?,. (¢) is the pressure measurement at the jth re-
ceiver position attributable to a source S;(¢) at the ith source
position. The source function includes the source-medium cou-
pling; therefore, it is an effective source. The value Pj’,. (¢)is the
impulse response of the true medium at the jth receiver po-
sition attributable to a source at the ith source position. The
receiver function R (¢) includes the medium-receiver coupling
as well. In the following analysis we drop R;(¢) by assuming
that receiver (geophone) calibration is known and the effect of
medium-receiver coupling to data can be ignored in compari-
son with that corresponding to the source.

If we Fourier transform equation (1), FT{(D, P, S)(¢)} —
(d, p, s)(w), ignoring R;(r) factor, we get

(@) = pfi(w)si(@), @

where w is the angular frequency equal to 2 times the tempo-
ral frequency f. Convolution in the time domain is now direct
multiplication in the frequency domain.

Next, to define the normalized wavefield we first select the
reference receiver, say, with j = 1. The normalized wavefield tjii
is defined in such a way that 1, =d%/df;, j =2, ..., NG.It has
a property of generating data at the jth receiver position when
it is multiplied by the data at the reference point. Rewriting,
and using the relation given by equation (2), we get

di(@)  ph(w)si(w)  pl(o)
d{ii (w) pili (w)si (w) piii (w)
Here, the source spectrum cancels itself out, so the normalized

wavefield is the same as the normalized impulse response of
the medium.

t;.i. (a)) =

®)

FULL-WAVEFORM INVERSION

In this section we show that the normalized wavefield, or the
normalized impulse response defined by equation (3), is ade-
quate as input for the full-waveform inversion. In other words,
information in misfits in normalized wavefields is sufficient in
constructing the objective functional for the inversion. We gen-
erate synthetic data for a given set of model parameters using
an appropriate numerical method. From the synthetic data, a
normalized wavefield is obtained for the given model, and it is
compared with the data given by equation (3) to find the misfit.

The proposed inversion scheme using the normalized wave-
field is tested using a simple 2D acoustic model. Let us consider

the impulse response governed by a2D acoustic wave equation
in the frequency domain:

w?
V2p(x, x;, ) + mp(x, X, w)+8(x—x%) =0, (4)
where the impulse response p is the scalar pressure wavefield,
v is the velocity, and (x, x,) are the field and source posi-
tions in two dimensions. The source is an impulse point source
expressed as a 2D spatial delta function §(x —x;) located at
x;. The source is also a delta function §(¢) at r =0 in the time
domain. To obtain the numerical solution of equation (4), the
spatial domain is first divided into a number of square ele-
ments of equal size, and a finite-element modeling (Marfurt,
1984; Pratt, 1990) scheme is used. Details of the finite-element
method are found in many textbooks (e.g., Zienkiewicz and
Taylor, 1989). The model parameter is the acoustic velocity in
each of the square elements. After a numerical solution for the
impulse response is obtained, the synthetic normalized wave-
field is obtained for the impulse response of the given velocity
model:

: ™ (w
o =20 10 NG, =128,
i) ©

where m denotes the impulse response for the prescribed model
to distinguish it from the recorded responses superscripted by
d for the true model [see equation (3)].

The inversion procedure minimizes the difference between
normalized wavefields given by equations (3) and (5). The
misfit functional to be minimized may be formally written as

¢(m) = |W4(T" -9 |, (6)

where ||e||> denotes the L2 norm and W, accounts for the mea-
surement errors in the data. For data with uncorrelated er-
rors, Wy is a diagonal matrix whose elements are the inverse
of the standard deviation of measurement errors. The column
vector (T™ — T¢) consists of misfits in a normalized wavefield,
and the parameter vector m represents the acoustic velocity in
the square elements. The misfit at the reference data position
is always zero (! = #{.). The misfit vector (T —T¢) has both
real and imaginary parts, so the actual number of data points
used for the inversion (NVEQ)is2 x NFREQ x NS x (NG —1).
Here, the variable NFREQ is the number of frequencies used
for the inversion, W, is an NEQ x NEQ square matrix, and the
data misfit (T™ —T%) is an NEQ x 1 column matrix.

We use the Gauss-Newton method for the inversion by first
expanding the objective functional, equation (6), into a Taylor
series (e.g., Bertsekas, 1982; Tarantola, 1987; Oldenburg et al.,
1993):

¢(m+8m) = p(m) + y,L sm + 0.56m” H,,,6m + 0{(5m)3}.
(7)

Here, dm is a perturbaﬁon to the model parameter and y,, is
an M x 1 column matrix consisting of elements

99
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g=1,2,..., M,
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with M being the total number of parameters to be determined.
Explicitly, it is written as

Ym = 2JTW;W‘1(T’” —_ Td),

where J is the Jacobian (sensitivity) matrix [see equation (8)
below]. The term H,, is an' M x M square (Hessian) matrix
consisting of elements

3¢

, r=12,..., M,
om,om, 47

compactly written as
kL)
H, =2"W/W,J+ 0 (——) .
om

The last term of this equation represents the changes in the
partial derivatives of data (normalized wavefield in this case)
resulting from changes in the parameter m. This term is small
if the residuals are small or if the forward differential equation
is quasi-linear (Tarantola, 1987). The term is usually difficult
to compute and is generally ignored. For each frequency
and source the sensitivity function Jis a [2x (NG —1)] x M
rectangular matrix. For example, for the ith source at a fixed
frequency, the entries to the Jacobian corresponding to the jth
receiver and the gth model parameter may be evaluated as

T
real part of ( ! >
}<Jq,<z*j—1),f) _ 9
Jg@ i

mg
with

N
imaginary part of (8#)

my

m

i _ 8 pi 1 (9 pjiopy ©)
Omg  9mg p3; Py \9mg  pf; Omg

Here, the sensitivity function is a function of the partial

derivatives of the impulse responses, which are independent of

the source spectrum. Therefore, the full-waveform inversion

of seismic data does not require the knowledge of the actual

a) b)

source waveform, and this feature is the essence of the
proposed inversion scheme.

The actual functional to be minimized consists of the mis-
fit [equation (6)] and a model-roughness term to constrain
the smoothness on the variation of the model in the updating
process. Specifically, it may be written

@(m + ém) = ¢(m + Sm) + A[|W,,6m|%,  (10)

where 1 is the Lagrange multiplier that controls relative impor-
tance of data misfit and model roughness and W, is an M x M
weighting matrix of the model parameters. When the matrix
is diagonal, there is no spatial smoothing in the inversion pro-
cedure. On the other hand, if the matrix represents a gradient
operator, its effect is to spatially smooth out the changes. Mini-
mization of functional (10) with respect to the perturbation m
in model parameters results in a system of normal equations:

(ITWIWI + AWIW,,)6m = —J Wl W, (T" — T7),
(11)

from which the model parameter at the (k - 1)th iteration is
updated to

m’;+1 = m]; + Bmz, g=12,..., M. (12)

The iteration stops when the change in model parameters is
below a preset tolerance, typically given in terms of rms of the
misfit.

NUMERICAL EXAMPLES

'The model used for the test is a broken dipping fault
in a background of 3000-m/s constant velocity as shown in
Figures 1a and 2a. The fault consists of a 6-m-thick low-velocity
(2500-m/s) layer overlain by another 6-m-thick high-velocity
(3500-m/s) layer. A crosshole configuration is used for the ex-
ercise, with the source borehole at x = —45 m and the receiver
borehole at x =45 m. A total of 21 line sources are used with
an equal vertical separation of 9 m, and the same number and
separation are for the receivers. For each source, the pressure
wavefields computed at the 21 receiver positions are normal-
ized by the first pressure wavefield, resulting in 21 normalized
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FiG. 1. Comparison of full-waveform inversion results using a fault model in a background of 3000-m/s constant velocity. Starting
model used for the inversion is a 3300-m/s uniform velocity. (a) A 2D velocity model. (b) Inversion result using pressure wavefield
with impulse source. (c) Inversion result using normalized wavefield.
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wavefields. The number of frequencies used is 10, starting from
10 to 100 Hz and linearly separated by 10 Hz. Prior to inver-
sion, 5% Gaussian noise was added to the synthetic data. A grid
consisting of 200 x 260 elements of uniform cell size, 3 x 3 m,
is used to compute pressure wavefields using the finite ele-
ment method. The domain to be reconstructed is 120 x 180 m
(40 x 60 elements), containing a total of 2400 velocity parame-
ters. It took 250 MB of memory and 18 hours per iteration on a
Pentium 4, 1.5-GHz PC. The size of the matrix from equation
(11) is modest for the test model, so we solved it using QR
decomposition with successive Householder transformations.
The Lagrange multiplier A is automatically selected in the in-
version process. The selection procedure starts with executing
a given number, say nl, of inversions using »/ different multi-
pliers that are separated equally in logarithmic scale. The same
Jacobian matrix is used xl times, with only different A values, at
this step. As a result, n/ updated parameter sets are produced,
followed by nl forward model calculations resulting in n/ data
misfits. A reasonable choice for the model parameter and the
Lagrange multiplier update would be the one that produces
the least data misfit.

The proposed inversion scheme was tested using two initial
models of different uniform velocities: 3300 and 2850 m/s. For
each initial model, we first carried out conventional inversion,
assuming the source function was known. The functional to be
minimized is the misfit between the pressure wavefield data
and the numerically computed data, which can be obtained by
convolving the impulse response obtained from equation (4)
and the source waveform. For simplicity, the source waveform
used in this study is an impulse source. For the first model with
its initial velocity of 3300 m/s, the resulting velocity image is
shown in Figure 1b. We also obtained the velocity structure
using the proposed normalized wavefield approach; the result
is shown in Figure 1c. Here, the functional to be minimized
is the misfit in the normalized wavefield, not in the pressure
wavefield; therefore, the source function is not involved in the
inversion process. In this exercise we use n/=3 in each itera-
tion to select parameter update and Lagrange multiplier. After
six iterations for the normalized wavefield approach and seven
iterations for a conventional approach with an impuise source,

2 b)

Source Wall-

R?nalvar Well

two results appear almost identical. Note that the normalized
wavefield approach has one less data point than the conven-
tional approach with known source function because data at
one receiver position was used to normalize the others. The
fault is imaged correctly, but the images are smeared both ver-
tically and horizontally, mainly because of the constraint of
imposed model smoothness for stabilizing the inversion. The
smearing appears to be more pronounced, especially in the ver-
tical direction, for the case of normalized wavefield approach.
Figure 3 shows that the rms misfits for the inversion of a normal-
ized wavefield converge faster than the conventional approach.
The rms misfit used for the conventional approach is defined as

nﬁs | sDTSD 1 %N %Q 8d78dj;
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Fic. 3. Comparisons in convergence in rms misfits and associ-
ated Lagrange multiplier as a function of iteration during the
full-waveform inversion with a 3300-m/s uniform velocity start-
ing model. Pressure wavefield was generated using an impulse
source.
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FIG. 2. Comparison of full-waveform inversion results using a fault model in a background of 3000-m/s constant velocity. Starting
model used for the inversion is a 2850-m/s uniform velocity. (a) A 2D velocity model. (b) Inversion result using pressure wavefield
with impulse source. (c) Inversion result using normalized wavefield.
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Fic. 4. Comparisons in convergence in rms misfits and associ-
ated Lagrange multiplier as a function of iteration during the
full-waveform inversion with a 2850-m/s uniform velocity start-
ing model. Pressure wavefield was generated using an impulse
source.

where D indicates pressure wavefield data, T indicates conju-
gate transpose, 8d;; = (d§—d?), and NEQD =2 x NFREQ x
NS x NG. The rms rmsﬁt used for the normalized wavefield
approach is

STTST 1 NS NG-1NFREQ (SZ‘-T;(SZ";
rms, = y = |\NE TZ Z Z - 2,
NEQT Q i=l j=1 k=1 t;ii

where T indicates normalized wavefield data, 8t;; = (t" ~th)s
and NEQT=2 x NFREQ x NS x (NG —1). Note that the
Lagrange multiplier changes as iteration continues. The second
example starts with an initial guess of a 2850-m/s uniform veloc-
ity. For this initial model the inversion converges faster to the
same level (Figure 4) as the one with the 3300-m/s initial model.
It took four iterations for the conventional approach and three
iterations for the normalized wavefield approach. The fast and
stable convergence may have been the result of the better initial
model chosen. The inverted velocity distribution for the con-
ventional approach and the normalized wavefield approach are
shown in Figures 2b and 2c, respectively. The qualities of the : -
version with the 2850-m/s initial model appear to be better than
the ones with the 3300 m/s initial model (Figures 1b and 1c).
The overall quality of the inversion may improve by adopting
a staged approach from low frequencies to high frequencies
(e.g., Song et al., 1995; Pratt, 1999a) instead of inverting all
frequency information simultaneously. Further improvement
may be achieved by using denser deployment of sources and
receivers with a sampling rate on the order of cell size.

k

CONCLUSIONS

A full-waveform inversion scheme exploiting the useful
property of the normalized wavefield has been proposed, and
the validity of the scheme is successfully demonstrated using

a simple 2D synthetic model. A normalized wavefield for 3
source depends only on the subsurface model and the position
of the source; it is independent of the source spectrum by con-
struction. The highlight of this paper is that full-waveform in-
version of seismic data can be achieved using the normalized
wavefield. With the proposed method, potential inversion er-
rors because of source estimation required by conventional:
full-waveform inversion methods can be eliminated. Extend-
ing of the proposed scheme to 3D problems with applications -
to real data requires further investigation. ‘
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